DY 46.51

ECG curve versus heart rate variability analysis applied to normal and heart-failure patients

R. Bartsch¹, A. Heinen¹, St. Heinrichs¹, Th. Hennig², D. Jäger³, Ph. Maass² Fachbereich Physik, Universität Konstanz, 78457 Konstanz ²Institut für Physik, Technische Universität Ilmenau, 98684 Ilmenau ³Medizinische Klinik II - Kardiologie, Städtisches Krankenhaus Friedrichshafen, 88048 Friedrichshafen

Motivation

Multiresolution wavelet analysis applied to time series generated from R-R interval time variation ("heart rate variability") has been shown to be a potential clinical tool to discriminate healthy patients from those with a cardiac pathology [1]. In contrast to this method we apply wavelet analysis to time series generated from the morphology of electrocardiogram- (ECG) segments (R-R intervals) by deliberately removing heart rate variability.

Data preparation

Removal of artefacts: elimination of all R-R intervals not satisfying

$$0.6 \ \overline{\tau}_i < \tau_i < 1.5 \ \overline{\tau}_i$$

 $\overline{\tau}_i$ moving average over last 30 R-R intervals

Form analysis

Heart rate analysis

Each heart beat in the ECG is normalized in amplitude to the interval [0,1] and re-sampled in time to a fixed number L of data

points
→ removal of heart rate variability

The resulting normalized data in time space (or frequency space) can be represented by a 256-dimensional "form vector" (for more details, see poster DY 46.52) Here we characterize the morphology of the signal by the modulus of the form vector or, equivalently, by the total

$$P_i = L \cdot \sum_{j=0}^{L-1} |f_i(j)|^2$$

time series

using directly the time between

R-R interval time τ,

Wavelet analysis

Discrete wavelet transformation to calculate wavelet coefficients W(m,n) on different scales ("multiresolution wavelet analysis")

$$W(m,n) = 2^{-m/2} \cdot \sum_{i=0}^{M-1} y_i \cdot \psi(2^{-m}i - n)$$
 m... scale variable n... location
$$y_i = \tau_i \text{ or } y_i = P_i$$

 $\Psi(x)$: wavelet basis function ("mother wavelet")

- in our case:
$$\psi_H(x) = \begin{cases} 1 & 0 \le x < \frac{1}{2} \\ -1 & \frac{1}{2} \le x < 1 \end{cases} \qquad Haar \text{ wavelet}$$
 0 otherwise

 $\psi_{H}(x) = \psi_{H}(2^{-m}i - n) \stackrel{m=2}{=} \psi_{H} \left(\frac{i}{4} - n\right)$ - example:

new time series: W(m,n) for each scale m

- standard deviation of wavelet coefficients:

$$\sigma_{war}(m) = \left[\frac{1}{N-1}\sum_{n=0}^{N-1}\left(W\left(m,n\right) - \left\langle W\left(m,n\right)\right\rangle\right)^{2}\right]^{\frac{1}{2}} \text{ with } N = \operatorname{int}\left(M/2^{n}\right)$$

Results

- correct classification of every patient as belonging either to the heart-failure or normal group with 100% accuracy in scale window 4 and 5 (corresponding to 16 and 32 heartbeats)
- analysis based solely on R-R intervals
- heart failure patients have a lower heart rate variability in comparison to normal patients

- almost 100% classification on scales m=1-3 for normal and heart-failure
- heart failure patients do not have the form-stability as observed for normal

→ somewhat better separation of heart-failure/normal patients using daytime data

Summary and perspectives

- form variability analysis yields good discrimination of heart-failure and normal patients
- heart-failure patients have a lower heart rate variability but higher variability in the form of ECG-segments compared to normal patients
 - → interpretation: heart rate variability is probing external stimuli (nervous and endocrine system) while morphology based analysis is dominated by the interplay of functional components of

References